Section 3.8 The Big Equivalences Theorem
Recall that the point \(\vect{v} = \oq{v_1}{v_2}{\ldots}{v_n} \in \mathbb{R}^n\) can be written as the list of coefficients using the standard basis \(\beta\) which gives the \(n \times 1\) matrix
This allows multiplication on the left by an \(n \times n\) matrix \(\mtx{M}\) to result in a new vector \(\vect{b} \in \mathbb{R}^n\) written: \(\mtx{M}\vect{v} = \vect{b}\text{.}\)
Checkpoint 3.8.1.
For any \(\vect{u}=\ot{u_1}{u_2}{u_3}, \vect{v}=\ot{v_1}{v_2}{v_3}\text{,}\) \(\vect{w}=\ot{w_1}{w_2}{w_3}\) and \(\vect{a}=\ot{a_1}{a_2}{a_3} \in \mathbb{R}^3\text{,}\) with \(c_i \in \mathbb{R}\text{,}\) write the equation:
\(c_1\vect{u}+c_2\vect{v}+c_3\vect{w} = \vect{a}\) as:
a linear combination: \(\left[ \begin{array}{c} \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \end{array} \right] + \underline{\hspace{.2in} } \left[ \begin{array}{c} \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \end{array} \right]+ \underline{\hspace{.2in} } \left[ \begin{array}{c} \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \end{array} \right] = \left[ \begin{array}{c} \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \end{array} \right]\)
an augmented matrix: \(\left[ \begin{array}{ccccc} \underline{\hspace{.2in} } \amp \underline{\hspace{.2in} } \amp \underline{\hspace{.2in} } \amp \vdots \amp \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \amp \underline{\hspace{.2in} } \amp \underline{\hspace{.2in} } \amp \vdots \amp \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \amp \underline{\hspace{.2in} } \amp \underline{\hspace{.2in} } \amp \vdots \amp \underline{\hspace{.2in} } \end{array} \right]\)
a matrix equation: \(\left[ \begin{array}{ccc} \underline{\hspace{.2in} } \amp \underline{\hspace{.2in} } \amp \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \amp \underline{\hspace{.2in} } \amp \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \amp \underline{\hspace{.2in} } \amp \underline{\hspace{.2in} } \end{array} \right]\) \(\left[ \begin{array}{c} \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \end{array} \right]\) = \(\left[ \begin{array}{c} \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \\ \underline{\hspace{.2in} } \end{array} \right]\)
Checkpoint 3.8.2.
Write the augmented matrix obtained by setting \(\vect{a} = \ot{a_1}{a_2}{a_3}\) equal to a linear combination of the vectors \(\{ \ot{1}{4}{2}, \ot{0}{2}{1}, \ot{-1}{0}{0}, \ot{1}{2}{3} \}\text{.}\) Determine if these vectors are linearly independent and span \(\mathbb{R}^3\text{.}\)
Checkpoint 3.8.3.
For a given \(r \times c\) matrix \(\mtx{A}\text{,}\) sort the following statements into two groups such that the statements in each group are equivalent to each other:
The columns of \(\mtx{A}\) are linearly independent.
The columns of \(\mtx{A}\) span \(\mathbb{R}^r\text{.}\)
There is a leading 1 in each row when \(\mtx{A}\) is row reduced.
There is a leading 1 in each column when \(\mtx{A}\) is row reduced.
Any system of equations with coefficients from \(\mtx{A}\) will have \(\leq 1\) solution.
Any system of equations with coefficients from \(\mtx{A}\) will have \(\geq 1\) solution.
The matrix equation \(\mtx{A}\vect{x}=\vect{b}\) will have \(\leq 1\) solution.
The matrix equation \(\mtx{A}\vect{x}=\vect{b}\) will have \(\geq 1\) solution.
Theorem 3.8.4. The Big Theorem.
For \(\mtx{A}\) an \(n \times n\) matrix, the following are equivalent:
\(\displaystyle det(A) \neq 0\)
The columns of \(\mtx{A}\) span \(\mathbb{R}^n\)
The columns of \(\mtx{A}\) are linearly independent
\(\mtx{A}\vect{x}=\vect{b}\) has a unique solution, \(x \in \mathbb{R}^n\text{,}\) for each \(\vect{b}\) in \(\mathbb{R}^n\)
\(\mtx{A}\) has a multiplicative inverse
Challenge 3.8.5.
The following can be added to the above list
The rows of \(\mtx{A}\) form a basis for \(\mathbb{R}^n\)
Discussion Question 3.8.6.
For an \(n \times n\) matrix \(\mtx{A}\) with \(det(\mtx{A}) \neq 0\text{,}\) how can elementary operations be used to find \(\mtx{A}^{-1}\text{?}\)