Skip to main content

Section 2.12 Reducing a Spanning Set

Show how to write the point \(\mathbf{A} = \ot{a}{b}{c}\) as a linear combination of the points in \(\mathbb{S} = \{ \ot{1}{0}{-1},\ot{1}{2}{3},\ot{3}{2}{1},\ot{0}{1}{0} \}\text{.}\) Are all the points in \(\mathbb{S}\) necessary?

Find a subset of \(\mathbb{S} = \{ \ot{1}{0}{-1},\ot{1}{2}{3},\ot{3}{2}{1},\ot{0}{1}{0} \}\) that spans \(\mathbb{R}^3\text{.}\)

Find a subset of \(\mathbb{S} = \{ \ot{1}{0}{-1},\ot{1}{2}{3},\ot{3}{2}{1},\ot{0}{1}{0} \}\) that does not span \(\mathbb{R}^3\text{.}\)